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Motivation

I number of posted photos increases daily1

I hard for user to select or find good photos based on appeal or liking

I how to decide if a photo is good or not for a social media platform?

I is it possible to automatically predict if an image will be liked or not?

→ connection between human rating, aesthetic appeal and liking decisions
1for Flickr: average 1.68 million photos per day for 2016, see [fli18]
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Human rating, aesthetic appeal and liking

Figure: aesthetic and liking, based on Leder et al. [Led+04]

I aesthetics: artwork, intent of artist, genre of art, perception, . . . [Jos+11]
I main factors for human aesthetics judgment: the photo, the context and

the social influences [Led+04]
I lines between aesthetics and liking get blurred [LRB16b; LRB16a]

→ features and extensions
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State of the art features and extensions

I many other works for photo aesthetic prediction published, e.g. [Dat+06;
WBT10; KDH14; Kal+15; Tot+14]

I mostly only focused on classification problem

◦ → focus on a regression problem formulation for liking prediction

I or using only low level features [Dat+06; WBT10], or titles and other
data [KDH14]

◦ → extend and combine feature ideas

◦ → image, social network, natural language analysis and deep learning

→ our prediction framework
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Our general approach

I features: technical, low-level (llf), high-level, DNNs, social network (SN)

I focus on log(#like)/log(#view) = like/view rate

→ example feature group: DNNs
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Example feature group – DNN

I using several pre-trained Deep Neural Networks (DNNs)

I lastLayerValues: inception V3 [Sze+15], similar approach for NR video
quality [GSR18]

I hash, hashProbs: using image similarity DNN for image
retrieval [Lin+15]

I age, gender: using DNN [RTV15; RTV16] for age and gender estimation

I faceCount, maxProbFace: DNN for face detection [PVZ15]

→ dataset for evaluation
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Dataset – crawled images from 500px

Crawled 500px images and used samples for experiments.

category # crawled log(#like)/log(#view) rate r
/ sample pictures min r max r r σ(r)
editors 20975 0.43 0.83 0.68 0.05
fresh 59130 0.10 0.86 0.62 0.11
sample9000 9000 0.10 0.82 0.62 0.11
combined20k 20000 0.11 0.83 0.65 0.09
all80k 80105 0.10 0.86 0.63 0.10

each sample shows similar distribution for log(#like)/log(#view) rate

→ evaluation

7 / 16



Evaluation of Feature Groups
Which feature groups are important? using sample9000

I RMSE and R2 for leave-one-out experiment; *= feature set

leave-out technical low-level high-level SN DNNs all* llf*
RMSE 0.098 0.098 0.098 0.104 0.097 0.098 0.108
R2 0.233 0.228 0.229 0.135 0.255 0.231 0.072

I social network (SN) features show high impact

I better performance without DNNs (could be sample9000 property)

I single feature: show small impact (extended feature importance analysis)

→ large scale evaluation
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Evaluation of Photo-subject Derivable Features
Can we just use photo derivable features?

I opd= technical, llf, dnn features; all, llf= low level features

RMSE all opd llf R2 all opd llf
sample9000 0.098* 0.105 0.108 0.231* 0.128 0.072
combined20k 0.077* 0.088 0.091 0.326* 0.114 0.056
all80k 0.085* 0.096 0.099 0.329* 0.139 0.091

I all performs best for all datasets

I opd can be used to approximate image liking; better than llf

→ conclusion
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Conclusion and Future Work

I introduced a framework for image-liking prediction

◦ pure image features; social media, meta information and comments

◦ combination of image, social network, natural language analysis and deep learning

I performed evaluation of our new features

◦ good results in comparision with only low-level features

◦ large impact of social network features

◦ still hard to predict liking

I open points, possible extensions:

◦ other effects/indicators: temporal, psychological, fashion, art, . . .

◦ modern aesthetic datasets
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Thank you for your attention

. . . . . . are there any questions?
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Full list of features
Feature groups, S=string, I=integer, F=float, M=multiple, SN=social
network, LN=local network, * input dependent

Group Name Type Src Dim

Technical cameraType, locationName S meta 2
focalLength, ISOValue, shutterSpeed I meta 3
latitude, longitude, aperture F meta 3
height, width, dateInfos I meta 4

Low-Level globalHue/Sat/Val F img 3
subimageHue/Sat/Val 1. . . 9 MF img 27
max/min index of SubImgHue/Sat/Val MI img 8
colorDist, noiseDiff, edgeRatio MF img *+2

High-Level titleWordCount, -NonStopWordCount I meta 2
titleWordLenDist MI meta *
titleTagJaccSim, -TagWordSim, -Sent F meta 3

DNNs classDistScores, lastLayerValues MF img 2053
hash, hashProbs I img 49
age, gender, faceCount, maxProbFace F img 4

SN commentSentiment, -WordLengthDist MF com 6+*
comment, friendCommentRate MF com *+1
followers/friends/galleries/groups-Count I user 3
userAffection/photos/favorites-Count I user 3
LN-triangleCount/MeanFoFCount I user 2
LN-2hopReachableUsers I user 1
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